
MATH3385/5385. Quantum Mechanics. Appendix A:

Fourier Integrals & Dirac δ-function

Fourier Integrals and Transforms

The connection between the momentum and position representation relies on the notions
of Fourier integrals and Fourier transforms, (for a more extensive coverage, see the module
MATH3214).

Fourier Theorem: If the complex function g ∈ L2(R) (i.e. g square-integrable), then
the function given by the Fourier integral, i.e.

f(x) =
1√
2π

∫ ∞

−∞
g(k)eikx dk

exists (i.e. the integral converges uniformly for all x ∈ R) and f ∈ L2(R) (so f is square
integrable as well). Furthermore, we have the equality

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|g(k)|2 dk , (Parseval′s formula)

The function g(k) is called the Fourier transform of f(x) and it can be recovered from the
following inverse Fourier integral

g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx

Example: To see the Fourier theorem “in action”, let us take the simple example of a
“block function” g(k) of the form

g(k) =

{

1√
a

, k0 − 1
2a ≤ k ≤ k0 + 1

2a

0 , otherwise

Calculating the Fourier integral is simple:

f(x) =
1√
2π

∫ ∞

−∞
g(k) eikx dk =

1√
2π

∫ k0+a/2

k0−a/2

1√
a
eikx dk

=
eik0x

√
2πa

[

eikx

ix

]a/2

−a/2

=
2eik0x

√
2πa

sin(ax/2)

x

The main behaviour of this function is given by sin(ax/2)/x whose graph is given by;
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function  sin(ax/2)/x

Using the well-known integrals:
∫ ∞

−∞

sin2(x)

x2
dx = π ,

∫ ∞

−∞

sin(αx)

x
dx =

{

π , α > 0
− π , α < 0

it is easy to establish
∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞

2

πa

sin2(ax/2)

x2
dx =

=

∫ ∞

−∞
|g(k)|2dk =

∫ k0+a/2

k0−a/2

1

a
dk = 1

in accordance with Parseval’s formula. Furthermore from the inverse Fourier integral

1√
2π

∫ ∞

−∞
f(x)e−ikx dx =

1√
2π

∫ ∞

−∞

2√
2πa

sin(ax/2)

x
ei(k0−k)x dx

=
1

π
√

a

∫ ∞

−∞
cos((k − k0)x)

sin(ax/2)

x
dx =

=
1

π
√

a

∫ ∞

−∞

1

2x

[

sin(k − k0 +
a

2
)x − sin(k − k0 −

a

2
)x

]

dx = g(k)

In fact, in the second step we used the fact that if we do a change of integration variables
x → −x the exponent picks up a minus sign, so that we can replace the exponent by
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a cosine (taking half the integral in its orignal form and half the integral after change
of variables). In the third step we used a simple trigonometric formula [ cos a sin b =
1
2 sin(a + b) − 1

2 sin(a − b) ] after which we used the integral given above noting that if
either k > k0 + a/2 or k < k0 − a/2 the contributions from both terms in the integrand
cancel, whereas they add up when k is in the interval k0 − a/2 < k < k0 + a/2. Thus, we
recover the function g(k) from the inverse Fourier integral.

Dirac δ-function

If we were to substitute the inverse Fourier integral into the Fourier integral we would get

f(x) =
1√
2π

∫ ∞

−∞
dk eikx

(

1√
2π

∫ ∞

−∞
dy e−ikyf(y)

)

and if we were to interchange bluntly the order of the integrations we would obtain:

f(x) =

∫ ∞

−∞
dy f(y)

(

1

2π

∫ ∞

−∞
dk eik(x−y)

)

This procedure is strictly not allowed as can be concluded from the fact that the integral
between the brackets on the right-hand side

δ(x − y) =
1

2π

∫ ∞

−∞
dk eik(x−y)

is an ill-defined object: it does not converge if x = y and if x 6= y the integrand becomes
ever more rapidly oscillating as k → ±∞ indicating that the integral would vanish.

If we would follow the backsubstitution of the Fourier integral a bit more closely, we
could see what is going on. Let us investigate the finite inverse Fourier integral, i.e. for
large but finite L we consider:

1√
2π

∫ L

−L
dx e−ik′xf(x) =

1√
2π

∫ L

−L
dx e−ik′x

(

1√
2π

∫ ∞

−∞
dk eikxg(k)

)

=

∫ ∞

−∞
dk g(k)

(

1

2π

∫ L

−L
dx ei(k−k′)x

)

=

∫ ∞

−∞
dk g(k)

sin(k − k′)L

π(k − k′)

where we have assumed that the finite and the infinite integral can be interchanged. The
function

sin(k − k′)L

π(k − k′)

has the same shape as the function ocurring in the graph of the example where the oscilla-
tions occur with period ∼ 2π/L and the peak has height ∼ L/π. Thus, if L becomes large
this function becomes increasingly rapidly oscillating whilst the peak value will become
ever larger. Now performing the limit L → ∞ on the integral on the left-hand side in the
above calculation would yield the required inverse Fourier integral

1√
2π

∫ ∞

−∞
dx e−ik′xf(x) = lim

L→∞

∫ ∞

−∞
dk g(k)

sin(k − k′)L

π(k − k′)
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Unfortunately, we cannot pull the limit through the integral since this would give us the
ill-defined object:

δ(k − k′) = lim
L→∞

sin(k − k′)L

π(k − k′)
.

The function within the limit on the r.h.s. of this formula becomes an increasingly rapidly
oscillating function as L → ∞, whilst the maximum at k = k′ grows linearly with L. Thus,
this limit really does not exist: it has only a symbolic meaning. The way in which we deal
with such a generalised function1 is as follows: the δ-function is defined as a functional
(cf. Handout # 6), and it can only be used in combination with an integral. Thus, if we
apply the limit-like object given above on functions through an integral it is understood
that the limit L → ∞ is taken after, and not before, the integral is performed. Thus by
definition

∫ ∞

−∞
δ(k − k′)g(k) dk ≡ lim

L→∞

∫ ∞

−∞
dk g(k)

sin(k − k′)L

π(k − k′)

In order to give a simple (non-rigorous) argument on what the integral on the r.h.s.
amounts to we observe that if L is sufficiently large the peak of the function in the integrand
is very sharp and drops down sufficiently fast so that we can approximate the integral by

∫ k′+π/L

k′−π/L
dk g(k)

sin(k − k′)L

π(k − k′)
≃ g(k′)

∫ k′+π/L

k′−π/L
dk

sin(k − k′)L

π(k − k′)
≃ g(k′)

∫ ∞

−∞
dk

sin(k − k′)L

π(k − k′)
= g(k′)

since the latter integral is equal to unity. Thus, we obtain the result that g(k) is recovered
from the inverse Fourier integral.

The δ-function has many realisations, not only as the limit given above, but also in
terms of alternative forms like:

δ(x) = lim
ǫ→0

1√
πǫ

exp

(

−x2

ǫ

)

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2

Again, in these latter forms, it is understood that whenever we apply the δ-function in an
integral, the limit is supposed to be taken after the integral:

∫ ∞

−∞
δ(x)f(x) dx ≡ lim

ǫ→0

∫ ∞

−∞
f(x)

1√
πǫ

e−x2/ǫ dx = f(0)

We will often simply write the formula:

δ(x) =
1

2π

∫ ∞

−∞
eikxdk ,

but we have to remember that this formula should not be taken literally, as the integral
for x = 0 diverges! The integral should be understood in the sense explained above: only

1A proper theory was developed by the French mathematician L. Schwartz in the 1950’s, which is known
as the theory of distributions. For an accessible introduction see A.H. Zemanian, Distribution theory and

transform analysis, (Dover publications, 1987).
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when we integrate δ(x) over x together with reasonable functions f(x) do we get a sensible
answer; the corresponding integral is then understood to be calculated as:

∫

dx f(x)δ(x − x′) =
1

2π

∫

dk

∫

dx f(x)eik(x−x′)

i.e. we perform the integration over k first. By the result from Fourier’s theorem gives us
back the function f evaluated at x′.

The main property of the δ-function is precisely the latter: it singles out the value
x = 0 corresponding to its argument equal to zero. Thus, symbolically we can write this
as:

δ(x)f(x) = f(0)δ(x)

but rembering that this makes only sense when performing an integral. Some other prop-
erties are:

δ(x) = δ(−x) , δ(cx) =
1

|c|δ(x) c real constant

The “derivative” δ′ of the δ function can be defined by its action through an integral by

∫ ∞

−∞
δ′(x)f(x) dx = −

[

df(x)

dx

]

x=0

which makes sense if we think of this as performing an integration by parts on the integral.

Finally we remark that in QM we often have to work with three-fold integrals over in
the space of position or momentum. In those situations we can use a product of δ-funtions
corresponding to the three components of the position- resp. momentum vector. Thus,
these act as e.g.

∫

dr δ(r − r
′) f(r) = f(r′) , with δ(r − r

′) = δ(x − x′)δ(y − y′)δ(z − z′)

The three-dimensional δ-function can be represented in the form:

δ(r − r
′) =

1

(2π)3

∫

dk eik·(r−r′) ,

where the same remark as above applies: the integral formula is only symbolic and stands
for a procedure where, whenever we integrate a function f(r) with δ(r − r′) over r then
we should perform the integration over r after we have performed the integration over k.

Connection with Fourier Series

Fourier series are treated in the module MATH2430. We recall that a periodic function f
with period 2L, i.e. for which f(x + 2L) = f(x) can be expanded as a Fourier series as
follows

f(x) =

∞
∑

n=0

[

An cos
nπx

L
+ Bn sin

nπx

L

]
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It is sometimes more convenient to work with an expansion in terms of complex variables

f(x) =

∞
∑

n=−∞

aneinπx/L

It is easy to see that both series are equivalent and the coefficients An, Bn can be expressed
in terms of the complex coefficients an and vice versa. The central point in working with
Fourier series is the integral

1

2L

∫ L

−L
ei(n−m)πx/Ldx = δnm =

{

1 , n = m
0 , n 6= m

where δnm is the Kronecker δ-symbol. This integral allows us to recover the Fourier
coefficients an from the function f via the formula:

am =
1

2L

∫ L

−L
f(x)e−imπx/L dx

The Fourier integral can be viewed as a continuous analogue of the Fourier series, namely
the result of taking the limit L → ∞, in which case we have an infinite period. In fact,
since the difference between two successive integers ∆n = 1 we can write

f(x) =
L

π

∑

n

aneinπx/L π∆n

L
=

1√
2π

∑

n

g(kn)eiknx∆kn

with kn = πn/L and g(kn) = Lan

√

2/π. As L → ∞ the increment ∆kn → dk infinitesi-
mally small. The Fourier sum then goes over into the Fourier integral

f(x) =
1√
2π

∫ ∞

−∞
eikxg(k) dk

The coefficients g(kn) will behave as follows:

g(kn) =

√
2 Lan√

π
=

1√
2π

∫ L

−L
f(x)e−iknx dx

which in the limit L → ∞ obviously goes over into the inverse Fourier integral.
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