This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| notes:cft [2020/11/24 16:08] – created cjj | notes:cft [2020/11/25 19:43] (current) – [Fourier integral theorem and Dirac δ-function] cjj | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ======Continuous Fourier transform====== | ======Continuous Fourier transform====== | ||
| + | Consider the Fourier transform: | ||
| + | \begin{eqnarray} | ||
| + | D(x) & = & \frac{1}{4\pi^2} \int_{-\infty}^\infty d\kappa e^{-i\kappa x}\tilde{D}(\kappa) \\ | ||
| + | & \approx & \frac{1}{4\pi^2} \int_{-K}^K d\kappa e^{-i\kappa x}\tilde{D}(\kappa) \\ | ||
| + | & \approx & \frac{1}{4\pi^2} \sum_{k=0}^{N-1} \frac{2K}{N} \exp\left[-i\left(\frac{2K}{N}k-K\right) x\right]\tilde{D}_k \\ | ||
| + | D_m & \propto & e^{iKx}\sum_{k=0}^{N-1}\exp\left[-i\frac{2K}{N}k\left(\frac{2L}{N}m-L\right)\right]\tilde{D}_k \\ | ||
| + | & \propto & \exp\frac{i2KLm}{N} \sum_{k=0}^{N-1} | ||
| + | \exp\frac{-i 4KLkm}{N^2}\exp\frac{i2KLk}{N} \tilde{D}_k | ||
| + | \end{eqnarray} | ||
| + | Let $2KL=\pi N$, we get | ||
| + | \begin{equation} | ||
| + | e^{-i\pi m}D_m\propto\sum_{k=0}^{N-1}\exp\left(-2\pi i\frac{km}{N}\right)e^{i\pi k}\tilde{D}_k | ||
| + | \end{equation} | ||
| + | =====Fourier integral theorem and Dirac δ-function===== | ||
| + | {{ : | ||
| + | [[https:// | ||
| + | \[ | ||
| + | \int_{-\infty}^\infty dx \frac{\sin(xL)}{x} = \pi | ||
| + | \] | ||
| + | As $L$ goes to infinity, the integrand becomes more and more like a δ-function. | ||
| + | |||
| + | - [[http:// | ||