Site Tools


notes:cft

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
notes:cft [2020/11/24 16:08] – created cjjnotes:cft [2020/11/25 19:43] (current) – [Fourier integral theorem and Dirac δ-function] cjj
Line 1: Line 1:
 ======Continuous Fourier transform====== ======Continuous Fourier transform======
 +Consider the Fourier transform:
 +\begin{eqnarray}
 +D(x) & = & \frac{1}{4\pi^2} \int_{-\infty}^\infty d\kappa e^{-i\kappa x}\tilde{D}(\kappa) \\
 + & \approx & \frac{1}{4\pi^2} \int_{-K}^K d\kappa e^{-i\kappa x}\tilde{D}(\kappa) \\
 + & \approx & \frac{1}{4\pi^2} \sum_{k=0}^{N-1} \frac{2K}{N} \exp\left[-i\left(\frac{2K}{N}k-K\right) x\right]\tilde{D}_k \\
 +D_m & \propto & e^{iKx}\sum_{k=0}^{N-1}\exp\left[-i\frac{2K}{N}k\left(\frac{2L}{N}m-L\right)\right]\tilde{D}_k \\
 + & \propto & \exp\frac{i2KLm}{N} \sum_{k=0}^{N-1}
 +  \exp\frac{-i 4KLkm}{N^2}\exp\frac{i2KLk}{N} \tilde{D}_k
 +\end{eqnarray}
 +Let $2KL=\pi N$, we get
 +\begin{equation}
 +e^{-i\pi m}D_m\propto\sum_{k=0}^{N-1}\exp\left(-2\pi i\frac{km}{N}\right)e^{i\pi k}\tilde{D}_k
 +\end{equation}
 +=====Fourier integral theorem and Dirac δ-function=====
 +{{  :notes:delta_dirichlet.svg?320|}}
 +[[https://en.wikipedia.org/wiki/Dirichlet_integral|Dirichlet integral]]
 +\[
 +\int_{-\infty}^\infty dx \frac{\sin(xL)}{x} = \pi
 +\]
 +As $L$ goes to infinity, the integrand becomes more and more like a δ-function.
 +
 +  - [[http://www1.maths.leeds.ac.uk/~frank/math3383/AppA.pdf|Fourier Integrals & Dirac δ-function]] {{ :notes:appa.pdf|PDF}}
notes/cft.1606234092.txt.gz · Last modified: 2020/11/24 16:08 by cjj