This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
notes:dan:contrast-matrix [2022/03/20 03:56] โ created cjj | notes:dan:contrast-matrix [2022/03/20 08:37] (current) โ cjj | ||
---|---|---|---|
Line 1: | Line 1: | ||
======Contrast Matrix Formulation====== | ======Contrast Matrix Formulation====== | ||
- | The constraint | + | The constraints on the full model can be written as |
$$\mathbf{L} ๐ = \mathbf{c} $$ | $$\mathbf{L} ๐ = \mathbf{c} $$ | ||
Using Lagrange multiplier, we can get the estimate for null hypothesis $\widehat{๐}_0$ by minimizing | Using Lagrange multiplier, we can get the estimate for null hypothesis $\widehat{๐}_0$ by minimizing | ||
+ | $$\mathcal{L}\equiv\left(\mathbf{y}-\mathbf{X}๐\right)^{T}\left(\mathbf{y}-\mathbf{X}๐\right)+\left(\mathbf{L}๐-\mathbf{c}\right)^{T}๐, | ||
+ | where $๐$ is a column vector of multipliers. | ||
+ | The minimization leads to | ||
+ | $$ -2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐_{0}\right)+\mathbf{L}^{T}๐_{0}=0 $$ | ||
+ | and | ||
+ | $$ \mathbf{L}๐_{0}=\mathbf{c}. $$ | ||
+ | These equations give | ||
+ | \begin{align*} | ||
+ | & \mathbf{L}^{T}๐_{0}=2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐_{0}\right)=2\mathbf{X}^{T}\mathbf{y}-2\mathbf{X}^{T}\mathbf{X}๐_{0}\\ | ||
+ | \Rightarrow\, | ||
+ | \Rightarrow\, | ||
+ | \end{align*} | ||
+ | or | ||
+ | $$ ๐_{0}=2\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right), | ||
+ | as well as | ||
+ | $$ ๐_{0}=\widehat{๐}-\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}/ | ||
+ | or | ||
+ | \begin{align*} | ||
+ | \widehat{๐}-๐_{0} & = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}/ | ||
+ | & = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right). | ||
+ | \end{align*} | ||
+ | |||
+ | As the the error of the restricted model is given by the square of the residual, | ||
+ | $$ \mathbf{r}_{\mathrm{restr}} = \mathbf{y}-\mathbf{X}๐_{0} = \mathbf{r}_{\mathrm{full}}+\mathbf{X}\left(\widehat{๐}-๐_{0}\right), | ||
+ | we have | ||
+ | \begin{eqnarray*} | ||
+ | \mathrm{Err}_{\mathrm{restr}} & = & \mathbf{r}_{\mathrm{restr}}^{T}\mathbf{r}_{\mathrm{restr}}\\ | ||
+ | & = & \mathbf{r}_{\mathrm{full}}^{T}\mathbf{r}_{\mathrm{full}}+\left(\widehat{๐}-๐_{0}\right)^{T}\color{# | ||
+ | & = & \mathrm{Err}_{\mathrm{full}}+\color{# | ||
+ | & = & \mathrm{Err}_{\mathrm{full}}+\color{# | ||
+ | & & \times\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right)\\ | ||
+ | & = & \mathrm{Err}_{\mathrm{full}}+\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right)^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right) | ||
+ | \end{eqnarray*} | ||
+ | where the cross terms vanish since $ \mathbf{X}^{T}\mathbf{r}_{\mathrm{full}} = 0 $ by the condition of the full model, and we observe that $ \mathbf{X}^{T}\mathbf{X} $ and $ \mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T} $ are both symmetric matrices. |