Site Tools


notes:dan:contrast-matrix

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
notes:dan:contrast-matrix [2022/03/20 03:56] โ€“ created cjjnotes:dan:contrast-matrix [2022/03/20 08:37] (current) โ€“ cjj
Line 1: Line 1:
 ======Contrast Matrix Formulation====== ======Contrast Matrix Formulation======
  
-The constraint can be written as+The constraints on the full model can be written as
 $$\mathbf{L} ๐›ƒ = \mathbf{c} $$ $$\mathbf{L} ๐›ƒ = \mathbf{c} $$
 Using Lagrange multiplier, we can get the estimate for null hypothesis $\widehat{๐›ƒ}_0$ by minimizing Using Lagrange multiplier, we can get the estimate for null hypothesis $\widehat{๐›ƒ}_0$ by minimizing
 +$$\mathcal{L}\equiv\left(\mathbf{y}-\mathbf{X}๐›ƒ\right)^{T}\left(\mathbf{y}-\mathbf{X}๐›ƒ\right)+\left(\mathbf{L}๐›ƒ-\mathbf{c}\right)^{T}๐›Œ,$$
 +where $๐›Œ$ is a column vector of multipliers.
 +The minimization leads to
 +$$ -2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐›ƒ_{0}\right)+\mathbf{L}^{T}๐›Œ_{0}=0 $$
 +and 
 +$$ \mathbf{L}๐›ƒ_{0}=\mathbf{c}. $$
 +These equations give
 +\begin{align*}
 +& \mathbf{L}^{T}๐›Œ_{0}=2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐›ƒ_{0}\right)=2\mathbf{X}^{T}\mathbf{y}-2\mathbf{X}^{T}\mathbf{X}๐›ƒ_{0}\\
 +\Rightarrow\, & \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐›Œ_{0}=2\widehat{๐›ƒ}-2๐›ƒ_{0}\\
 +\Rightarrow\, & \mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐›Œ_{0}=2\mathbf{L}\widehat{๐›ƒ}-2\mathbf{c}
 +\end{align*}
 +or
 +$$ ๐›Œ_{0}=2\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right), $$
 +as well as
 +$$ ๐›ƒ_{0}=\widehat{๐›ƒ}-\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐›Œ_{0}/2, $$
 +or
 +\begin{align*}
 +\widehat{๐›ƒ}-๐›ƒ_{0} & = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐›Œ_{0}/2\\
 +& = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right).
 +\end{align*}
 +
 +As the the error of the restricted model is given by the square of the residual,
 +$$ \mathbf{r}_{\mathrm{restr}} = \mathbf{y}-\mathbf{X}๐›ƒ_{0} = \mathbf{r}_{\mathrm{full}}+\mathbf{X}\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right), $$
 +we have
 +\begin{eqnarray*}
 +\mathrm{Err}_{\mathrm{restr}} & = & \mathbf{r}_{\mathrm{restr}}^{T}\mathbf{r}_{\mathrm{restr}}\\
 + & = & \mathbf{r}_{\mathrm{full}}^{T}\mathbf{r}_{\mathrm{full}}+\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)^{T}\color{#00a}{\mathbf{X}^{T}\mathbf{X}\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)}\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\color{#800}{\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)^{T}}\color{#00a}{\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)}\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\color{#800}{\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}}\\
 + & & \times\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)
 +\end{eqnarray*}
 +where the cross terms vanish since $ \mathbf{X}^{T}\mathbf{r}_{\mathrm{full}} = 0 $ by the condition of the full model, and we observe that $ \mathbf{X}^{T}\mathbf{X} $ and $ \mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T} $ are both symmetric matrices.
notes/dan/contrast-matrix.1647748581.txt.gz ยท Last modified: 2022/03/20 03:56 by cjj