This is an old revision of the document!
The constraints on the full model can be written as $$\mathbf{L} ๐ = \mathbf{c} $$ Using Lagrange multiplier, we can get the estimate for null hypothesis $\widehat{๐}_0$ by minimizing $$\mathcal{L}\equiv\left(\mathbf{y}-\mathbf{X}๐\right)^{T}\left(\mathbf{y}-\mathbf{X}๐\right)+\left(\mathbf{L}๐-\mathbf{c}\right)^{T}๐,$$ where $๐$ is a column vector of multipliers. The minimization leads to $$ -2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐_{0}\right)+\mathbf{L}^{T}๐_{0}=0 $$ and $$ \mathbf{L}๐_{0}=\mathbf{c}. $$ These equations give \begin{align*} & \mathbf{L}^{T}๐_{0}=2\mathbf{X}^{T}\left(\mathbf{y}-\mathbf{X}๐_{0}\right)=2\mathbf{X}^{T}\mathbf{y}-2\mathbf{X}^{T}\mathbf{X}๐_{0}\\ \Rightarrow\, & \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}=2\widehat{๐}-2๐_{0}\\ \Rightarrow\, & \mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}=2\mathbf{L}\widehat{๐}-2\mathbf{c} \end{align*} or $$ ๐_{0}=2\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right), $$ as well as $$ ๐_{0}=\widehat{๐}-\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}/2, $$ or \begin{align*} \widehat{๐}-๐_{0} & = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}๐_{0}/2\\ & = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐}-\mathbf{c}\right). \end{align*}