Site Tools


notes:dan:contrast-matrix

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
notes:dan:contrast-matrix [2022/03/20 07:29] โ€“ cjjnotes:dan:contrast-matrix [2022/03/20 08:37] (current) โ€“ cjj
Line 26: Line 26:
 \end{align*} \end{align*}
  
 +As the the error of the restricted model is given by the square of the residual,
 +$$ \mathbf{r}_{\mathrm{restr}} = \mathbf{y}-\mathbf{X}๐›ƒ_{0} = \mathbf{r}_{\mathrm{full}}+\mathbf{X}\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right), $$
 +we have
 +\begin{eqnarray*}
 +\mathrm{Err}_{\mathrm{restr}} & = & \mathbf{r}_{\mathrm{restr}}^{T}\mathbf{r}_{\mathrm{restr}}\\
 + & = & \mathbf{r}_{\mathrm{full}}^{T}\mathbf{r}_{\mathrm{full}}+\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)^{T}\color{#00a}{\mathbf{X}^{T}\mathbf{X}\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)}\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\color{#800}{\left(\widehat{๐›ƒ}-๐›ƒ_{0}\right)^{T}}\color{#00a}{\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)}\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\color{#800}{\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}}\\
 + & & \times\mathbf{L}^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)\\
 + & = & \mathrm{Err}_{\mathrm{full}}+\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)^{T}\left(\mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T}\right)^{-1}\left(\mathbf{L}\widehat{๐›ƒ}-\mathbf{c}\right)
 +\end{eqnarray*}
 +where the cross terms vanish since $ \mathbf{X}^{T}\mathbf{r}_{\mathrm{full}} = 0 $ by the condition of the full model, and we observe that $ \mathbf{X}^{T}\mathbf{X} $ and $ \mathbf{L}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{L}^{T} $ are both symmetric matrices.
notes/dan/contrast-matrix.1647761366.txt.gz ยท Last modified: 2022/03/20 07:29 by cjj